top of page

Professor of Marketing 

Imperial College Business School

South Kensington Campus                               

London SW7 2AZ

Faculty Profile Page

Email: Stephan.a.seiler@gmail.com

Google Scholar profile

SSRN profile

LinkedIn profile  

Twitter: https://twitter.com/SeilerStephan

I use data to understand how consumers make choices in settings

ranging from laundry detergent discounts to choosing a hospital for

a bypass operation. I am particularly interested in how consumers gather

information before making a purchase and what we can learn from data on

consumer search behavior.

I am an Associate Editor at Marketing Science, Management Science, 

Quantitative Marketing and Economics,  and the Journal of  Industrial Economics.

I co-organize the European Quant Marketing Seminar (eQMS), and I am a Public Editor at @QME_Journal.

 

 

Recent Research:

New Companion Overview Papers on "Consumer Search" (both with Elisabeth Honka and Raluca Ursu)

(1) Consumer Search: What Can We Learn from Pre-Purchase Data

This paper provides a high-level overview of substantive research areas where search data is particularly valuable. We first provide background on different types of search data and model frameworks and then cover how search data can be used to better estimate preferences, to analyze how marketing variables affect search behavior, and to study the impact of search frictions on market outcomes.

(2) The Sequential Search Model: A Framework for Empirical Research (with Accompanying Code) 

In this more technical paper, we provide a unified treatment of the sequential model in empirical work aimed at especially at researchers that  are new to working with search data and models. We also  provide a comprehensive code base that covers different methods for computing reservation utilities  and 4 different  estimation approaches. Click here for access to the code.

🚨🚨 New Working Paper: 🚨🚨 How Much Influencer Marketing is Undisclosed? Evidence from Twitter

In this new paper with Daniel Ershov and Yanting He, we develop a new method to detect undisclosed sponsored content on Twitter. 

We gather a novel data set of over 100 million posts across 268 brands from 2014 to 2021 and find that 96% (!!!) of sponsored content

is undisclosed. Despite tightening regulation, the share of undisclosed content decreases only slightly over time. Undisclosed

content is more likely to originate from younger brands with a large Twitter following, suggesting that disclosure might remain low

in the future.

New Paper: Demand Estimation with Text and Image Data 👈👈

New machine learning tools allow researchers to process unstructured data from text and images more easily. In this new paper

with Giovanni Compiani and Ilya Morozov, we extract measures of  similarity between products from product images and different 

sources of text (product descriptions, reviews, etc.) and then feed them into a demand model so that higher similarity leads to larger  

cross-price elasticities between products. We apply the model to data from multiple categories and show that it helps us recover

flexible substitution patterns.

Paper on Soda Taxes featured on the "How I Wrote This" podcast.

Our paper on soda taxes (with Anna Tuchman and Song Yao was covered in the most recent

episode  of the “How I Wrote This” podcast.  We discuss what motivated us to pursue this research,

the various  decisions that we took when working  on the paper, and how we navigated the review process. 

Find out more about my recent research projects on my Blog.

... or follow me on Twitter ... 

Oct2023_pic1.jpg
image.png
image.png
bottom of page